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Many slides over the course adapted from Dan Klein
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Announcements

� W2 is due today  (lecture or drop box)

� P2 is out and due on 2/18
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Expectimax Search Trees

� What if we don’t know what the 
result of an action will be? E.g.,
� In solitaire, next card is unknown
� In minesweeper, mine locations
� In pacman, the ghosts act randomly

� Can do expectimax search
� Chance nodes, like min nodes, 

except the outcome is uncertain
� Calculate expected utilities
� Max nodes as in minimax search
� Chance nodes take average 

(expectation) of value of children

� Later, we’ll learn how to formalize 
the underlying problem as a 
Markov Decision Process
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Maximum Expected Utility

� Why should we average utilities?  Why not minimax?

� Principle of maximum expected utility: an agent should 
choose the action which maximizes its expected utility, 
given its knowledge

� General principle for decision making

� Often taken as the definition of rationality

� We’ll see this idea over and over in this course!

� Let’s decompress this definition…
� Probability --- Expectation --- Utility
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Reminder: Probabilities

� A random variable represents an event whose outcome is unknown
� A probability distribution is an assignment of weights to outcomes

� Example: traffic on freeway?
� Random variable: T = amount of traffic
� Outcomes: T in {none, light, heavy}
� Distribution: P(T=none) = 0.25, P(T=light) = 0.55, P(T=heavy) = 0.20

� Some laws of probability (more later):
� Probabilities are always non-negative
� Probabilities over all possible outcomes sum to one

� As we get more evidence, probabilities may change:
� P(T=heavy) = 0.20, P(T=heavy | Hour=8am) = 0.60
� We’ll talk about methods for reasoning and updating probabilities later
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What are Probabilities?

� Objectivist / frequentist answer:
� Averages over repeated experiments

� E.g. empirically estimating P(rain) from historical observation

� Assertion about how future experiments will go (in the limit)

� New evidence changes the reference class

� Makes one think of inherently random events, like rolling dice

� Subjectivist / Bayesian answer:
� Degrees of belief about unobserved variables

� E.g. an agent’s belief that it’s raining, given the temperature

� E.g. pacman’s belief that the ghost will turn left, given the state

� Often learn probabilities from past experiences (more later)

� New evidence updates beliefs (more later)
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Uncertainty Everywhere

� Not just for games of chance!
� I’m sick: will I sneeze this minute?
� Email contains “FREE!”: is it spam?
� Tooth hurts: have cavity?
� 60 min enough to get to the airport?
� Robot rotated wheel three times, how far did it advance?
� Safe to cross street? (Look both ways!)

� Sources of uncertainty in random variables:
� Inherently random process (dice, etc)
� Insufficient or weak evidence
� Ignorance of underlying processes
� Unmodeled variables
� The world’s just noisy – it doesn’t behave according to plan!
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Reminder: Expectations

� We can define function f(X) of a random variable X

� The expected value of a function is its average value, 
weighted by the probability distribution over inputs

� Example: How long to get to the airport?
� Length of driving time as a function of traffic:

L(none) = 20, L(light) = 30, L(heavy) = 60

� What is my expected driving time?
� Notation: E[ L(T) ]

� Remember, P(T) = {none: 0.25, light: 0.5, heavy: 0.25}

� E[ L(T) ] = L(none) * P(none) + L(light) * P(light) + L(heavy) * P(heavy)

� E[ L(T) ] = (20 * 0.25) + (30 * 0.5) + (60 * 0.25) = 35
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Utilities

� Utilities are functions from outcomes (states of the world) 
to real numbers that describe an agent’s preferences

� Where do utilities come from?
� In a game, may be simple (+1/-1)
� Utilities summarize the agent’s goals
� Theorem: any set of preferences between outcomes can be 

summarized as a utility function (provided the preferences meet 
certain conditions)

� In general, we hard-wire utilities and let actions emerge 
(why don’t we let agents decide their own utilities?)

� More on utilities soon…
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Expectimax Search

� In expectimax search, we have 
a probabilistic model of how the 
opponent (or environment) will 
behave in any state
� Model could be a simple 

uniform distribution (roll a die)
� Model could be sophisticated 

and require a great deal of 
computation

� We have a node for every 
outcome out of our control: 
opponent or environment

� The model might say that 
adversarial actions are likely!

� For now, assume for any state 
we magically have a distribution 
to assign probabilities to 
opponent actions / environment 
outcomes Having a probabilistic belief about 

an agent’s action does not mean 

that agent is flipping any coins!
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Expectimax Search

� Chance nodes
� Chance nodes are like min 

nodes, except the outcome 
is uncertain

� Calculate expected utilities
� Chance nodes average 

successor values (weighted)

� Each chance node has a 
probability distribution over its 
outcomes (called a model)

� For now, assume we’re 
given the model

� Utilities for terminal states

� Static evaluation functions 
give us limited-depth search

…

…

492 362 …

400 300

Estimate of true 
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Expectimax Pseudocode

def value(s)

if s is a max node return maxValue(s)

if s is an exp node return expValue(s)

if s is a terminal node return evaluation(s)

def maxValue(s)

values = [value(s’) for s’ in successors(s)]

return max(values)

def expValue(s)

values = [value(s’) for s’ in successors(s)]

weights = [probability(s, s’) for s’ in successors(s)]

return expectation(values, weights)
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Expectimax Evaluation

� Evaluation functions quickly return an estimate for a 
node’s true value (which value, expectimax or minimax?)

� For minimax, evaluation function scale doesn’t matter

� We just want better states to have higher evaluations 
(get the ordering right)

� We call this insensitivity to monotonic transformations

� For expectimax, we need magnitudes to be meaningful

0 40 20 30 x2 0 1600 400 900

Mixed Layer Types
� E.g. Backgammon

� Expectiminimax

� Environment is an extra 
player that moves after 
each agent

� Chance nodes take 
expectations, otherwise 
like minimax

ExpectiMinimax-Value(state):
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Stochastic Two-Player

� Dice rolls increase b: 21 possible rolls 
with 2 dice
� Backgammon ≈ 20 legal moves
� Depth 4 = 20 x (21 x 20)3 1.2 x 109

� As depth increases, probability of 
reaching a given node shrinks
� So value of lookahead is diminished
� So limiting depth is less damaging
� But pruning is less possible…

� TDGammon uses depth-2 search + 
very good eval function + 
reinforcement learning: world-
champion level play
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Maximum Expected Utility

� Principle of maximum expected utility:
� A rational agent should choose the action which maximizes its 

expected utility, given its knowledge

� Questions:

� Where do utilities come from?

� How do we know such utilities even exist?

� Why are we taking expectations of utilities (not, e.g. minimax)?

� What if our behavior can’t be described by utilities?
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Utilities: Unknown Outcomes
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Going to airport from home

Take 
surface 
streets

Take 
freeway

Clear, 
10 min

Traffic, 
50 min

Clear, 
20 min

Arrive 
early

Arrive 
late

Arrive 
on time
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Preferences

� An agent chooses among:

� Prizes: A, B, etc.

� Lotteries: situations with 
uncertain prizes

� Notation:
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Rational Preferences

� We want some constraints on 
preferences before we call 
them rational

� For example: an agent with 
intransitive preferences can 
be induced to give away all 
of its money
� If B > C, then an agent with C 

would pay (say) 1 cent to get B

� If A > B, then an agent with B 
would pay (say) 1 cent to get A

� If C > A, then an agent with A 
would pay (say) 1 cent to get C

28
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Rational Preferences

� Preferences of a rational agent must obey constraints.
� The axioms of rationality:

� Theorem: Rational preferences imply behavior 
describable as maximization of expected utility
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MEU Principle

� Theorem:
� [Ramsey, 1931; von Neumann & Morgenstern, 1944]
� Given any preferences satisfying these constraints, there exists 

a real-valued function U such that:

� Maximum expected utility (MEU) principle:
� Choose the action that maximizes expected utility
� Note: an agent can be entirely rational (consistent with MEU) 

without ever representing or manipulating utilities and 
probabilities

� E.g., a lookup table for perfect tictactoe
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Utility Scales

� Normalized utilities: u+ = 1.0, u- = 0.0

� Micromorts: one-millionth chance of death, useful for paying to 
reduce product risks, etc.

� QALYs: quality-adjusted life years, useful for medical decisions 
involving substantial risk

� Note: behavior is invariant under positive linear transformation

� With deterministic prizes only (no lottery choices), only ordinal utility
can be determined, i.e., total order on prizes
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Human Utilities

� Utilities map states to real numbers. Which numbers?

� Standard approach to assessment of human utilities:

� Compare a state A to a standard lottery Lp between

� “best possible prize” u+ with probability p

� “worst possible catastrophe” u- with probability 1-p

� Adjust lottery probability p until A ~ Lp

� Resulting p is a utility in [0,1]
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Money

� Money does not behave as a utility function, but we can talk about 
the utility of having money (or being in debt)

� Given a lottery L = [p, $X; (1-p), $Y]

� The expected monetary value EMV(L) is p*X + (1-p)*Y

� U(L) = p*U($X) + (1-p)*U($Y)

� Typically, U(L) < U( EMV(L) ): why?

� In this sense, people are risk-averse

� When deep in debt, we are risk-prone

� Utility curve: for what probability p

am I indifferent between:

� Some sure outcome x

� A lottery [p,$M; (1-p),$0], M large
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Example: Insurance

� Consider the lottery [0.5,$1000;  0.5,$0]

� What is its expected monetary value?  ($500)

� What is its certainty equivalent?

� Monetary value acceptable in lieu of lottery

� $400 for most people

� Difference of $100 is the insurance premium

� There’s an insurance industry because people will pay to 
reduce their risk

� If everyone were risk-neutral, no insurance needed!
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Example: Insurance

� Because people ascribe different utilities to different 
amounts of money, insurance agreements can increase 
both parties’ expected utility

You own a car.  Your lottery: 
LY = [0.8, $0 ; 0.2, -$200]
i.e., 20% chance of crashing

You do not want -$200!

UY(LY) = 0.2*UY(-$200) = -200
UY(-$50) = -150

Amount
Your Utility

UY

$0 0

-$50 -150

-$200 -1000

Example: Insurance

� Because people ascribe different utilities to different 
amounts of money, insurance agreements can increase 
both parties’ expected utility

You own a car.  Your lottery: 
LY = [0.8, $0 ; 0.2, -$200]
i.e., 20% chance of crashing

You do not want -$200!

UY(LY) = 0.2*UY(-$200) = -200
UY(-$50) = -150

Insurance company buys risk: 
LI = [0.8, $50 ; 0.2, -$150]
i.e., $50 revenue + your LY

Insurer is risk-neutral: 
U(L)=U(EMV(L)) 

UI(LI) = U(0.8*50 + 0.2*(-150))
= U($10) > U($0)
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Example: Human Rationality?

� Famous example of Allais (1953)

� A: [0.8,$4k;  0.2,$0]
� B: [1.0,$3k;  0.0,$0]

� C: [0.2,$4k;  0.8,$0]
� D: [0.25,$3k;  0.75,$0]

� Most people prefer B > A, C > D
� But if U($0) = 0, then

� B > A ⇒ U($3k) > 0.8 U($4k)
� C > D ⇒ 0.8 U($4k) > U($3k)
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